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Abstract

We examine how climate hazards influence housing affordability, measured by the price-to-income ratio 
(PTI), across a global cross-section of cities. While previous research links PTI mainly to credit conditions 
and bubble dynamics, the role of climate hazards remains largely unexplored. Using hierarchical cluster 
analysis to group climate indicators and quantile regressions to capture effects across the distribution 
of PTI, we find that climate factors matter little at the median and lower end of the PTI distribution, but 
strongly influence the most overpriced markets. Higher cooling degree day, reflecting prolonged warming, 
raise PTI ratios by enhancing the amenity value of milder winters, whereas extreme hot days above 35 °C 
lower PTI, are associated to a reduced demand under acute heat stress, and therefore to lower PTIs. Our 
results which highlight both the risks of raising temperatures and the amenity value of warmer winters 
imply that temperate cities should prepare for intensified affordability pressures as warming winters 
drive further overpricing, while tropical cities may experience easing PTI but face severe health and 
infrastructure risks. Policies must integrate housing, finance, and climate adaptation to address these 
divergent challenges.

Keywords: Climate change, price-to-income, temperature raising, amenity, quantile regressions.
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The determinants of the price-to-income (PTI) ratio in urban real estate markets have been extensively exa-

mined in the literature (e.g., Himmelberg et al., 2005; Duprey & Klaus, 2022; Kuebler & Rugh, 2013; André et 

al., 2014; Pavlidis et al., 2016; Wu et al., 2012). Most studies focus on issues related to credit conditions and 

systemic risk, treating the PTI ratio primarily as a measure of housing affordability. The underlying premise is 

that housing prices cannot diverge indefinitely from the income levels of potential buyers. If prices consistent-

ly outpace income growth, households will eventually be unable to purchase homes, reducing demand and 

exerting downward pressure on prices (André et al., 2014).

Households generally choose between owning and renting, and this decision depends on the relative levels of 

house prices and rents. When prices rise faster than rents, renting becomes more attractive, easing pressure 

on housing prices while putting upward pressure on rents and, vice versa. Persistent deviations from these 

dynamics, such as those documented by André et al. (2014), raise concerns about social inequality, as vul-

nerable populations—including minorities and other underprivileged groups—are disproportionately affected 

by the reduced affordability that accompanies rising housing prices (e.g., Kuebler & Rugh, 2013; Zhang et al., 

2016; Ben-Shahar et al., 2019; Hamstead, 2024).

In contrast, the relationship between PTI ratios and climate risks remains far less understood. While a consi-

derable body of research has examined how environmental amenities and climate-related hazards influence 

housing prices, the direct link to PTI has received only limited attention. Emerging evidence shows that clima-

te risk and expectations of future hazards can depress property values in vulnerable areas by prompting sales 

at a discount (e.g., Beltrán et al., 2018; Beck and Lin, 2020; Addoum et al., 2024; Skouralis et al., 2024; Schuetz, 

2024; Blok and Fuerst, 2025; Agarwal et al., 2025). At the same time, local amenities—such as favorable wea-

ther—are powerful drivers of housing demand and prices. Some studies even find that moderate temperature 

increases can raise property values in certain regions (e.g., Maddison, 2003; Meier & Rehdanz, 2017; Sinha et 

al., 2021), potentially pushing prices away from local income fundamentals and thereby elevating PTI ratios.

This study bridges these two strands of the literature by examining, for the first time, the determinants of 

PTI ratios in relation to climate risks. While earlier works identify channels linking climate factors to housing 

outcomes, they largely focus on single countries, metropolitan areas, or narrowly defined hazards, leaving an 

incomplete understanding of how affordability ratios vary across a broad cross-section of cities worldwide. 

Moreover, most prior research centers on housing prices rather than the PTI ratio itself, and none of these 

studies consider how the effects of climate hazards may be concentrated at the extremes of the affordability 

distribution—where traditional mean-based regressions are ill-suited for empirical analysis.

1. Introduction
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Indeed, the evidence to date is dominated by average-effect estimates (e.g., Maddison, 2003; Rehdanz and 

Maddison, 2008; Meier and Rehdanz, 2017; Schuetz, 2024; Menéndez et al., 2024), limiting the ability to gene-

ralize findings and to explain the behavior of overheated markets with high PTI ratios relative to more typical 

markets. Our contribution is twofold. First, we assemble a large cross-section of major global cities, enabling 

a more comprehensive evaluation of PTI ratios and their relationship to climate hazards. Second, we pay par-

ticular attention to the right tail of the PTI distribution—capturing the most overpriced markets—and explicitly 

link these extreme affordability outcomes to climate risks, by the means of quantile regression analysis, a 

connection that remains absent in the existing literature.

Our results show that the dynamics of the most overpriced housing markets worldwide differ markedly from 

those of more typical markets. In cities at the right tail of the PTI distribution, both climate risks and clima-

te-related weather amenities are capitalized into housing prices. Specifically, higher values of cooling degree 

days are associated with increases in PTI ratios at the upper quantiles, whereas extreme temperatures are 

linked to reductions in PTI. Taken together, these findings reveal new social gaps to be expected from climate 

change. They suggest that overpricing is likely to intensify in regions where moderate temperature increases 

enhance the amenity value of climate change—provided these cities are not highly exposed to other climate 

hazards. By contrast, tropical cities, where temperatures already approach physiological and comfort limits 

and where climate risks are more acute, may experience declining PTI ratios as extreme heat reduces hou-

sing demand, thereby easing affordability pressures. 

The rest of this document is organized as follows. In section two we provide a brief literature review especia-

lly linking housing prices to climate factors. In section three we present our methodology which consists of 

cluster analysis and quantile regressions. In section four we can find our main results and robustness checks, 

while section five contains our main conclusions. 

There is growing evidence that climate risk is an increasingly relevant factor priced by real estate markets.  

Research stress out that physical risks related to climate change, including vulnerability to wildfires, flooding, 

and sea level rise (SLR), are becoming more and more priced into property and rental markets in a variety of 

countries and cities.  For instance, inland floodplain properties trade at a discount (Beltrán et al., 2018), in the 

same vein that homes exposed to flood threats do (Skouralis et al., 2024; Beck & Lin, 2020).  In this context, 

it has been demonstrated that city-level adaptation announcements are essential to reducing price declines 

2. Related literature
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in SLR-exposed locations (Agarwal et al., 2025), and that moderate flood hazards reduce rents as well (Blok 

& Fuerst, 2025).

Other climate hazards are associated to similar patterns: wildfires in California caused a 13% surge in nearby 

housing prices due to post-disaster migration (Hennighausen and James, 2024), and there is evidence that 

reductions in air pollution under the U.S. Clean Air Act were strongly capitalized into property prices (Sager 

& Singer, 2025). At the same time, risk capitalization is not universal. Murfin and Spiegel (2020) find no sig-

nificant sensitivity of U.S. coastal home prices to projected SLR, and Menéndez et al. (2024) report limited 

evidence of flood risk discounts in Spain. This evidence highlights those institutional and behavioral factors, 

including political orientation (Bernstein et al., 2022) and climate beliefs (Baldauf et al., 2020), which may act 

as mediators between climate risk and real estate prices.

Among the many signs of climate risk, increases in temperature have received particular attention. Here, 

findings are notably mixed, reflecting the interaction of two countervailing mechanisms. On the one hand, a 

climate-amenity effect implies that moderate warming can raise property values in cold regions by improving 

comfort and reducing heating needs. Meier and Rehdanz (2017) provide evidence that an inverted U-shaped 

relationship between housing prices and cooling degree days (CDD) in the United Kingdom, while Sinha et al. 

(2021) show that U.S. households exhibit a positive willingness to pay for warmer winters. On the other hand, 

a climate-risk effect captures the negative economic impacts of excessive heat. Chen et al. (2025) find that 

a one-unit temperature increase negatively impact housing prices, with stronger effects in inland and fiscally 

weaker regions. Welfare losses from high-heat exposure have also been quantified by Kuruc et al. (2025), who 

estimate a $1.53 per-hour utility loss during extreme heat at the U.S. All in all, we have that temperature may 

impact differs real estate prices across climate zones, levels of development, and income groups.

Despite extensive evidence at the city or national level, cross-sectional city-level analyses remain scarce. No-

table exceptions include Maddison (2003), who used cross-country data to show that a 2.5 °C temperature 

rise yields welfare gains for high-latitude countries but losses for low-latitude ones, and Tuholske et al. (2021), 

who employed fine-resolution climate and population information to document a marked increase in urban 

heat exposure between 1983 and 2016. On their side, McKinnon et al. (2024) analyze global observations and 

climate model projections to show that hottest days are warming at rates comparable to mean temperatures, 

with implications for variability and extremes. 

Our research also relates to a vibrant urban studies literature examining how climate risk interacts with the 

built environment. Zhao et al. (2014) and Zhang et al. (2023) show that urban heat island (UHI) and urban dry 

island effects shape local temperature and wet-bulb stress across North America and globally, while Jung 
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(2024) links UHI patterns in Singapore to mid-century planning decisions. Perera et al. (2023) study how 

urban densification compounds energy demand and reduces renewable power reliability in cities, while Ham-

stead (2024) highlights how housing and energy inequalities mediate heat and cold insecurities. 

Finally, a key motivation of our study is exploring the non-linear relationship between real estate prices and 

climate risk. Several prior works point to such non-linearities. Meier and Rehdanz (2017) explicitly identify an 

inverted U-shaped temperature–price relationship, while Chen et al. (2025) reveal heterogeneity across fiscal 

capacity and geography that implies threshold effects. Liao et al. (2025) use nonlinear lag structures to show 

sharply increasing hospitalizations under extreme heat in China, illustrating that damages may accelerate 

once critical temperature levels are crossed. These insights suggest that climate risk may influence real esta-

te markets in ways that cannot be captured by simple linear models.

To detect groups of related climate hazard indicators and mitigate multicollinearity in the quantile regression 

models, we first conducted a hierarchical cluster analysis. This method is based on the correlation matrix of 

the climate-risks indicators at the city level. This procedure helped inform our choice of explanatory variables 

by identifying sets of indicators with similar patterns from which we could select only one representative in-

dicator. Cluster analysis is an unsupervised machine learning method that groups variables into sets, or clus-

ters, such that members of the same cluster are more similar to one another than to members of other clus-

ters. This approach particularly helps to detect redundancy and reveal underlying structures in the dataset. 

Hierarchical clustering starts by treating each variable as its own cluster and then iteratively merges the two 

most similar clusters until all variables are grouped into a single hierarchy. The similarity (or dissimilarity) me-

asure is derived from the correlation matrix converted to a distance given by   ,  where  is the 

correlation between indicators  and . The rationale for using hierarchical clustering in this context is twofold: 

first, it reduces dimensionality by identifying clusters of indicators that are strongly correlated, which helps to 

minimize multicollinearity in our quantile regression, as we do not have a large number of observations; and 

second, it improves interpretability by reorganizing the correlation heatmap (see Figure 1) so that coherent 

groups of highly correlated indicators are positioned together.

3. Methodology

3.1. Cluster Analysis
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3.2. Quantile Regression

In traditional linear regression, the model is expressed as , where    

is the conditional mean of  given .  In contrast, quantile regression (Koenker and Bassett , 1978) assumes 

the   quantile of  conditional on  is equal to:

We employ fourteen climate hazard indicators sourced from the World Resources Institute (https://www.wri.

org/) that were selected to be directly relevant for city-level climate risk and consequently with the potential 

of affecting real estate prices.  They are defined as follows:

where  represents the quantile of the price to income ratio, denoted as  is the climate ha-

zard indicators included in the model after cluster analysis, and  is the coefficient measuring the asso-

ciation between the climate hazards and the thquantile of the price to income ratio. 

Note that we do not include other socio-economic determinants in our set of covariates, since our focus is on 

estimating the total effect of climate hazards at the city level and housing overvaluation. In the cross-section 

of cities, climate variables are exogenous to socio-economic determinants; thus, if the latter affect the out-

comes of interest, they would operate as mediators (or collider factors). In either case, their inclusion would 

bias the estimated effect. By contrast, climate risk factors would likely act as omitted confounders if excluded 

from the model, as they clearly interact with one another without a well-defined causal ladder (see Cinelli et 

al., 2024, for an introduction to the distinction between “good” and “bad” controls).

4. Data

(1)

Table 1. Climate Hazard Indicators at the City Level

Variable Name Description

Tmax_highest: The highest daily maximum temperature recorded in a given year, representing the most 
extreme heat event.

Tmax95pctl_days:
The annual number of days when the daily maximum temperature is at or above the local 
95th percentile, reflecting the frequency of unusually hot days relative to climatological 
norms.
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We complement the information on climate hazards for cities with information for the price to income ratio in 

these same cities, sourced from www.numbeo.com. Numbeo is the world’s largest crowdsourced database 

on cost of living and quality of life. It offers data and insights on expenses, housing prices, crime perceptions, 

healthcare standards, transportation quality, and many other real estate indicators.  

Our final dataset consists of 15 variables capturing climatic, health, and price to income indicators across 

195 cities. The dataset spans all inhabited continents, representing a wide range of climatic and economic. 

Note: Authors’ elaboration using categories in the World Resources Institute

Variable Name Description

Tmax40_days: The annual number of days when daily maximum temperature reaches or exceeds 40 °C, 
indicating the occurrence of extreme heat events.

Tmax35_days:
The annual number of days when daily maximum temperature reaches or exceeds 35 
°C, representing the frequency of very hot days relevant to health and infrastructure 
impacts.

CDD21:
Cooling degree-days with a reference temperature of 21 °C, calculated as the sum of 
degrees by which daily average temperatures exceed 21 °C across the year; this indicator 
represents potential demand for cooling energy.

Twb31_days:
The annual number of days when the maximum daily wet-bulb temperature equals 
or exceeds 31 °C, a threshold associated with severe risks to human health due to 
combined heat and humidity stress.

heatwave_duration:
The length (in days) of the longest consecutive run of at least three days with daily 
maximum temperature at or above the local 90th percentile, characterizing the duration 
of extreme heat events.

heatwave_count:
The number of distinct events per year in which at least three consecutive days experience 
daily maximum temperatures at or above the local 90th percentile, representing the 
annual frequency of heatwaves.

malaria_days:
The annual number of days when average daily temperature falls within the optimal 
range for the activity and survival of adult malaria-transmitting mosquitoes (Anopheles 
spp.), indicating climatic suitability for transmission.

arbovirus_days:
The annual number of days when average daily temperature is within the optimal range 
for the activity of arbovirus-carrying mosquitoes (e.g., Aedes aegypti), associated with 
risks of dengue, chikungunya, and Zika transmission.

pr_highest: The total millimeters of precipitation recorded on the wettest day of the year, representing 
the most extreme daily rainfall event.

pr90pctl_days: The annual number of days with daily precipitation at or above the local 90th percentile, 
indicating the frequency of heavy rainfall events.

drought_days: The annual number of days when the Standardized Precipitation Index (SPI) is at or 
below –1, representing meteorological drought conditions.

landsliderisk_days:
The annual number of days when a city with high landslide susceptibility also records 
high values of the Antecedent Rainfall Index, reflecting heavy or prolonged rainfall that 
may trigger slope failures.
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Cities such as Jakarta, Mumbai, Dhaka, Lagos, and Karachi experience tropical or subtropical climates with 

high temperatures and humidity, while cities like Helsinki, Stockholm, Edmonton, and Moscow are located 

in temperate or cold climates with pronounced seasonal variation. Many cities, including London, New York, 

Tokyo, Paris, and Singapore, are highly developed with advanced infrastructure, high income levels, and we-

ll-established urban services, whereas others, such as Addis Ababa, Karachi, and Guayaquil, face emerging 

economy conditions with more limited resources and infrastructure. The dataset also captures intermediate 

cases, including rapidly developing metropolises like Beijing, Shanghai, Istanbul, and Dubai, which combine 

substantial economic growth with diverse climate exposures. This diversity ensures the dataset encompas-

ses a broad spectrum of urban experiences, from tropical megacities and temperate European capitals to arid 

Middle Eastern centers and high-altitude South American cities, providing a rich context for analyzing climatic 

and socio-economic risks and their impacts on real estate markets.

In Table 2 we present the summary statistics for our 15 variables. Cooling Degree Days (CDD21) have a mean 

of 205 and a median of 108, ranging from near zero to 759, reflecting substantial variation in heat exposure 

over the cities in our sample. The number of days exceeding 35°C and 40°C averages 5.95 and 1.58, respec-

tively, with medians much lower than the means, indicating skewed distributions due to occasional extreme 

heat events. Days above the 95th percentile of maximum temperature average 15.4, while the highest maxi-

mum temperature averages 9.09. Wet-bulb temperature days above 31°C have a mean of 26.5 showing that 

extreme humidity-heat conditions are rare in most cities in our sample but extreme in some of them. Drought 

days average 22, and heatwaves occur on average 2.19 times per year, lasting 5.74 days, indicating mode-

rate but occasionally prolonged extreme conditions. We removed negative values for drought days from the 

dataset to estimate summary statistics in Table 1, as these likely represent errors or missing data coded as 

negative numbers. Because of this correction, we excluded drought days from our main analysis to ensure 

consistency and avoid biasing the results. 

Landslide risk days average 3.73, generally low but reaching up to 34.7 in some areas. Extreme precipitation, 

measured by pr90pctl_days and pr_highest, has means of 10.9 days and 9.45 mm, reflecting spatial variability 

in heavy rainfall. Vector-borne disease risk varies widely, with arbovirus and malaria days averaging 12.8 and 

19.5, and ranges exceeding 88 and 90 days in some cities.  Finally, the price-to-income ratio averages 14, 

with a wide range up to 46.6, highlighting substantial differences in cost of living relative to income. Overall, 

the data show considerable heterogeneity across variables, with many distributions skewed due to extreme 

events or outliers.
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Table 2. Summary Statistics

 variable mean median min max sd

CDD21 205 108 0.0341 759 223

Tmax35_days 5.95 1.06 0.0341 49.9 10.8

Tmax40_days 1.58 0.0341 0.0341 35.9 5.46

Tmax95pctl_days 15.4 14.3 0.0341 48.2 5.07

Tmax_highest 9.09 9.03 6.1 13.4 1.3

Twb31_days 26.5 0.0341 0.0341 92 34.2

drought_days 22 19.9 0 54.7 14.6

heatwave_count 2.19 2.18 0.0375 3.89 0.48

heatwave_duration 5.74 4.52 0.0375 38.9 4.65

landsliderisk_days 3.73 4.9 0 34.7 3.98

pr90pctl_days 10.9 10.2 5.62 35.8 3.19

pr_highest 9.45 8.34 0.532 29.4 4.6

arbovirus_days 12.8 6.27 0.0341 88.7 18.4

malaria_days 19.5 14.8 0.0341 90.3 19.4

price_income 14 12.4 1.9 46.6 8.78

Note: Summary statistics for 15 climatic risk variables and the price to income ratio across 195 cities. Values reported include 
the mean, median, minimum, maximum, and standard deviation. Extreme or missing values were addressed where necessary, 
including the removal of negative values for drought days. The table highlights the variability and distribution of key indicators 
across diverse climatic zones and levels of urban development.
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Figure 1. Cities in the Study Sample

Note: Our sample consists of 195 cities with information on climate hazards and price to income ratios for 2023.
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5. Results

In the first part of our results, we present the outcomes of the clustering analysis, followed by the quantile 

regression, which constitutes our main set of findings. 

To identify patterns of similarity and to address potential multicollinearity in the quantile regression models, 

we applied a hierarchical cluster analysis of the correlation matrix. This approach provided guidance for the 

selection of explanatory variables by grouping indicators with similar correlation profiles. The correlation 

structure and resulting clusters are visualized in Figure 2. Correlation strength is represented by color, ranging 

from dark blue (strong positive correlation, close to 1) to dark red (strong negative correlation, close to –1), 

with white representing weak or no correlation. Rectangles highlight six clusters identified through hierarchi-

cal clustering. We could summarize the six groups in the following lines:  

Heat stress: consists of Twb31_days (days with wet-bulb temperature >31 °C) and heatwave_count (annual 

frequency of heatwaves). These two indicators are strongly positively correlated, reflecting that high wet-bulb 

temperatures occur predominantly during frequent heatwaves. Heat extremes: consists of Tmax_highest 

(annual maximum temperature), Tmax35_days (days >35 °C), and Tmax40_days (days >40 °C). Strong positi-

ve correlations exist among these variables, indicating that cities with more extreme temperatures also expe-

rience a higher number of hot days, capturing the intensity and frequency of extreme heat events. Vector-bor-

ne disease suitability: Here we find pr_highest (maximum daily precipitation) malaria_days, CDD21 (cooling 

degree days), and arbovirus_days. Within this cluster, positive correlations suggest that climatic conditions 

favoring malaria and arbovirus transmission also coincide with higher cumulative heat load (CDD21), and 

high precipitation, linking thermal suitability with potential disease risk. Persistence of heat stress: Houses 

Tmax95pctl_days (days exceeding local 95th percentile) and heatwave_duration (length of longest heatwave). 

Moderate positive correlations indicate that long-duration heatwaves tend to coincide with more days excee-

ding extreme local temperatures.  Precipitation extremes: consists of landsliderisk_days and pr90pctl_days 

(days with precipitation above the 90th percentile), These two variables are positively correlated, highlighting 

that cities with very heavy single-day rainfall also tend to experience more frequent conditions for landslides. 

Droughts. Consists only of the indicator drought_days. This indicator presents abnormal negative values 

which places it in its own clusters, making it unfit to be included in the main quantile regression specifications.  

Overall, the clustering analysis reveals that the fourteen climate indicators naturally group into coherent cate-

gories representing heat extremes, heat stress, precipitation extremes, vector-borne disease suitability, pro-

5.1. Cluster Analysis:
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Figure 2. Cluster Analysis of Climatic Risk Factors

longed heatwaves, and drought risk. This grouping informs variable selection for subsequent modeling by hi-

ghlighting which indicators are strongly interrelated and may capture overlapping aspects of climate hazards.

Note: The figure presents six clusters derived from hierarchical clustering of climatic risk indicators 
across 198 cities. Correlation strength is indicated by color, ranging from dark blue (strong positive 
correlation, near 1) to dark red (strong negative correlation, near –1), with white representing weak or no 
correlation. Rectangles outline the six clusters identified.
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In what follows, we present our results on the effects of five climate hazards on cities. These results cover 

five of the six clusters previously described, with the sole exception of the first cluster in Figure 2, which con-

sists of only drought days and was excluded due to the anomaly patterns in that series explained earlier. This 

new set of results differentiates across levels of the PTI by applying quantile regressions. In other words, we 

estimate the impact of each climate risk factor on the price-to-income ratio at different quantiles of its distri-

bution across cities. Figure 3 reports the coefficients of the quantile regression model for quantiles ranging 

from 0.2 to 0.8. The shaded areas represent 95% bootstrapped confidence intervals.

The intercept is relatively stable across quantiles, though with some widening confidence intervals toward the 

tails. Among the climate hazard indicators, several distinct patterns emerge. Heatwave Count shows a po-

sitive association with the PTI ratio that strengthens monotonically toward higher quantiles, suggesting that 

more frequent heatwaves are disproportionately associated with higher PTI values in cities at the upper end 

of the distribution. Albeit the effect is only significant at the very high end of the distribution, corresponding to 

quantiles close to the 80th percentile.

On its side, Tmax35 (number of days above 35°C) exhibits a negative and increasingly pronounced effect in 

higher quantiles, indicating that extreme temperature days are linked to relatively lower PTI ratios in more 

overvalued markets. This is an interesting result as it means climate change, associated with more frequent 

peaks in daily temperature, may partially counterbalance over-valuation at traditionally less affordable cities 

around the world.

Nonetheless, CDD21 (cooling degree days above 21 °C) exerts a consistently positive influence on the pri-

ce-to-income ratio, with the effect strengthening and reaching statistical significance at the upper quantiles. 

This pattern indicates that greater cooling needs are associated with higher housing prices relative to income, 

and the impact is most pronounced in already less affordable markets. Beyond reflecting a potential climate 

premium, where rising temperatures raise the value of homes with superior cooling capacity or other heat-re-

silient amenities, this relationship may also arise because income growth tends to lag in hotter environments 

owing to productivity losses, higher living costs, or sectoral disruptions, further amplifying the ratio.

Heatwave Duration appears relatively flat across the middle quantiles, but rises steeply in the upper part of the 

distribution, but these effects are never significant due to the large confidence intervals associated to them. 

Finally, precipitation days above the 90th percentile show a generally negative effect that becomes more pro-

nounced in higher quantiles, again non-statistically-significant over the distribution of PTI.

5.2. Impact of climate risk factors on the PTI ratio
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All in all, the documented effects are particularly relevant for markets at the upper end of the PTI distribution. 

In Figure 4, we identify the cities that are especially sensitive to climate factors. As shown, this subsample—

defined as the top 25% of the PTI distribution—includes a wide variety of cities. 

Figure 3. Quantile Regression on Price-to-Income Ratios

Note: Quantile regression results explaining the Price-to-Income ratio using five variables from the original 14 climate 
hazard indicators: CDD21, Tmax35, Heatwave Count, Heatwave Duration, and Precipitation above the 90th percentile 
of the local distribution. The vertical axis shows the estimated effect on the Price-to-Income ratio, while the horizontal 
axis represents quantiles from τ = 0.2 to τ = 0.8. Extreme quantiles are excluded to reduce imprecision in tail estimates. 
Shadowed areas correspond to bootstrapped confidence intervals at 95%.
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Figure 4. Highest 25% of Cities According to the Price to Income Ratio in Our Study Sample

Note: The figure highlights the top 25% of cities in terms of Price-to-Income ratios, based on Numbeo data for 2023.
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The group of cities in Figure 4, which belong to the top 25% of the global price-to-income distribution is 

remarkably diverse, spanning both emerging and advanced economies. Many belong to low-income or mi-

ddle-income countries with predominantly tropical geographies and relatively low salaries, such as Jakarta, 

Bogotá, Rio de Janeiro, Mumbai, Bangkok, and Addis Ababa. At the same time, the list also includes cities in 

high-income countries with more temperate climates, such as Paris, Lisbon, Prague, Milan, and Seoul. This 

combination highlights that two forces are simultaneously at play: on the one hand, the amenity value that 

makes certain locations attractive despite affordability pressures, and on the other hand, the heightened ex-

posure to climate risks. Our quantile regression results suggest that these two effects are not only present but 

also interact, shaping the dynamics of housing affordability in the world’s most overpriced markets.

Table 3 presents the quantile regression estimates for the PTI ratio at the median (τ = 0.5) and at the upper tail 

of the distribution (τ = 0.8). The models are estimated with standardized variables (zero mean, unit variance), 

which allows for comparison of effect magnitudes across predictors in the style of standardized beta-coeffi-

cients models in statistics.

At the median (τ = 0.5), none of the climate hazard variables show statistically significant effects, although 

the coefficients for CDD21 and Tmax35_days  are already of opposite sign. This pattern becomes more pro-

nounced and statistically significant at the higher quantile (τ = 0.8), which corresponds to cities with elevated 

Price-to-Income ratios.

At τ = 0.8, both CDD21 and Tmax35_days exert significant effects of similar magnitude but opposite direction: 

higher values of CDD21 are associated with substantially higher PTI, while higher values of Tmax35_days are 

associated with lower ratios. The similarity in standardized effect sizes highlights that these two variables, 

though measured in different units (days vs. temperatures), counterbalance each other in shaping affordabi-

lity outcomes in high-ratio cities. This suggests that the housing market response to climate stress is hetero-

geneous, depending on whether risk is captured through longer periods of elevated cooling needs (CDD21) or 

through extreme hot days (Tmax35).

Other variables—such as heatwave count, heatwave duration, and extreme precipitation (above the 90th per-

centile)—do not show robust or consistent effects across quantiles. Heatwave count and duration are po-

sitively signed at higher quantiles, but their confidence intervals are wide and include zero, pointing to 

weaker associations.

Overall, the results emphasize that the drivers of real estate overvaluation differ across the distribution of PTI: 

climate factors do not significantly affect median affordability levels but become highly relevant in the upper 
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tail, where affordability constraints are most acute. The contrasting effects of CDD21 and Tmax35_days in 

particular underscore the importance of distinguishing between prolonged climatic stress and short-term 

extreme events when assessing housing market vulnerabilities.

This study provides fresh evidence on the role of climate risks in shaping housing affordability across a large 

global sample of cities. Using hierarchical clustering and quantile regression analysis, we show that climate 

hazards have negligible effects on PTI ratios in typical housing markets but become highly significant in the 

most overpriced ones. Prolonged warming, captured by cooling degree days, is associated with higher PTI ra-

Table 3. Regression Results for Higher Quantiles of the Price to Income Ratio

 variable Effects Lower CI Upper CI P-Value

tau=0.5

(Intercept) -0.14731 -0.27946 -0.05695 0.06280

Heatwave Count 0.09926 -0.00302 0.17889 0.15900

Temp. Max (35 D) -0.19346 -0.31471 0.0111 0.13800

CDD21 0.19539 -0.09025 0.28897 0.21200

Heatwave Duration -0.06156 -0.0856 0.19982 0.49700

Precip. 90th Pecent. -0.10911 -0.22671 0.05463 0.26600

tau=0.8

(Intercept) 0.59026 0.45228 0.79551 0.00003

Heatwave Count 0.22488 -0.05741 0.37969 0.09400

Temp. Max (35 D) -0.73854 -0.96342 -0.29834 0.00491

CDD21 0.79558 0.24161 1.0516 0.00444

Heatwave Duration 0.12869 -0.19296 0.58105 0.56600

Precip. 90th Pecent. -0.00271 -0.2227 0.12476 0.98500

Note: Table 3 reports standardized quantile regression coefficients (with 95% bootstrapped confidence intervals and associated 
p-values) estimating the effects of climate hazard indicators on the price-to-income (PTI) ratio at the median (τ = 0.5) and upper 
tail (τ = 0.8) of the distribution across cities. Positive coefficients indicate that higher values of the climate variable are associated 
with higher PTI ratios. Statistically significant effects are observed only at τ = 0.8, where prolonged warming (CDD21) raises PTI 
and extreme heat (days >35 °C) lowers PTI, highlighting that climate impacts emerge primarily in the most overpriced markets.

6. Conclusions



Climate Hazards Meet Overpriced Cities: Linking Environmental Risks to Real Estate Markets Across the Globe

Carlos Giraldo | Iader Giraldo | Jose E. Gomez-Gonzalez | Jorge M. Uribe

20

tios at the upper end of the distribution, reflecting the amenity value of milder winters and warmer conditions. 

In contrast, extreme heat events, as measured by the number of days exceeding 35 °C, are linked to lower PTI 

ratios in high-PTI markets, suggesting that acute heat stress can dampen demand and partially counteract 

housing overvaluation.

These findings highlight the dual nature of climate change as both an amenity and a risk. Cities experiencing 

moderate warming that enhances comfort, particularly during winter, may see housing markets become even 

less affordable as climate change progresses. Conversely, cities already exposed to high baseline temperatu-

res and frequent extreme heat events are likely to face downward pressure on PTI ratios as housing demand 

weakens, potentially improving affordability but at the cost of higher social, demographic, and health risks. 

The contrasting effects of prolonged warming and extreme heat underscore the importance of distinguishing 

between gradual climatic trends and short-term extreme events when assessing housing market vulnerabilities.

Policy implications to be extracted from our results are various. In high-income or temperate cities where 

warmer winters may further inflate PTI ratios—such as Paris, Lisbon, or Seoul—policymakers should prepa-

re for worsening affordability pressures by expanding the supply of affordable housing, revising zoning to 

allow higher-density development, and considering climate-sensitive property taxation to curb speculative 

demand. Financial regulators and lenders should incorporate differentiated climate signals into property va-

luation and mortgage underwriting to avoid fueling bubbles in markets where warming-related amenities 

drive overpricing. Infrastructure planning in these markets should also anticipate higher energy demand and 

cooling needs to prevent future supply bottlenecks.

In contrast, tropical and already hot cities such as Jakarta, Bangkok, or Addis Ababa are more likely to expe-

rience reduced overpricing but face serious societal challenges from extreme heat, including rising mortality, 

deteriorating public health, and climate-induced migration. For these cities, policy priorities should focus less 

on affordability – related to climate change – and more on adaptive strategies, such as investing in green in-

frastructure, cooling centers, and heat-resilient urban planning to maintain livability. At the national and regio-

nal level, governments should develop early-warning systems to monitor PTI dynamics, prepare for possible 

migration flows from heat-stressed areas, and coordinate housing and infrastructure investments accordin-

gly. By revealing that climate change can simultaneously worsen affordability in some markets while easing it 

in others, our results call for policies that integrate housing economics and climate adaptation, tailored to the 

distinct climatic and market conditions of each city.
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